从3D部分纹理扫描中重建3D人体形状仍然是许多计算机视觉和图形应用程序的基本任务 - 例如,身体动画和虚拟敷料。我们提出了一种新的神经网络体系结构,用于3D身体形状和高分辨率纹理完成-BCOM-NET,可以重建从中级到高级部分输入扫描的完整几何形状。我们将整个重建任务分解为两个阶段 - 首先,一个联合隐式学习网络(SCOM-NET和TCOM-NET),该网络将进行体素化扫描及其占用网格作为重建全身形状并预测顶点纹理的输入。其次,一个高分辨率的纹理完成网络,利用预测的粗顶点纹理来注入部分“纹理图集”的缺失部分。对3DBodyTex.V2数据集进行了彻底的实验评估表明,我们的方法在最先进的情况下取得了竞争成果,同时概括了不同类型和部分形状的水平。所提出的方法在2022年尖锐的挑战1-Track1中也排名第二。
translated by 谷歌翻译
在极低光线条件下捕获图像会对标准相机管道带来重大挑战。图像变得太黑了,太吵了,这使得传统的增强技术几乎不可能申请。最近,基于学习的方法已经为此任务显示了非常有希望的结果,因为它们具有更大的表现力能力来允许提高质量。这些研究中的激励,在本文中,我们的目标是利用爆破摄影来提高性能,并从极端暗的原始图像获得更加锐利和更准确的RGB图像。我们提出的框架的骨干是一种新颖的粗良好网络架构,逐步产生高质量的输出。粗略网络预测了低分辨率,去噪的原始图像,然后将其馈送到精细网络以恢复微尺的细节和逼真的纹理。为了进一步降低噪声水平并提高颜色精度,我们将该网络扩展到置换不变结构,使得它作为输入突发为低光图像,并在特征级别地合并来自多个图像的信息。我们的实验表明,我们的方法通过生产更详细和相当更高的质量的图像来引起比最先进的方法更令人愉悦的结果。
translated by 谷歌翻译
Diversity Searcher is a tool originally developed to help analyse diversity in news media texts. It relies on a form of automated content analysis and thus rests on prior assumptions and depends on certain design choices related to diversity and fairness. One such design choice is the external knowledge source(s) used. In this article, we discuss implications that these sources can have on the results of content analysis. We compare two data sources that Diversity Searcher has worked with - DBpedia and Wikidata - with respect to their ontological coverage and diversity, and describe implications for the resulting analyses of text corpora. We describe a case study of the relative over- or under-representation of Belgian political parties between 1990 and 2020 in the English-language DBpedia, the Dutch-language DBpedia, and Wikidata, and highlight the many decisions needed with regard to the design of this data analysis and the assumptions behind it, as well as implications from the results. In particular, we came across a staggering over-representation of the political right in the English-language DBpedia.
translated by 谷歌翻译
We improve the understanding of the $\textit{golden ratio algorithm}$, which solves monotone variational inequalities (VI) and convex-concave min-max problems via the distinctive feature of adapting the step sizes to the local Lipschitz constants. Adaptive step sizes not only eliminate the need to pick hyperparameters, but they also remove the necessity of global Lipschitz continuity and can increase from one iteration to the next. We first establish the equivalence of this algorithm with popular VI methods such as reflected gradient, Popov or optimistic gradient descent-ascent in the unconstrained case with constant step sizes. We then move on to the constrained setting and introduce a new analysis that allows to use larger step sizes, to complete the bridge between the golden ratio algorithm and the existing algorithms in the literature. Doing so, we actually eliminate the link between the golden ratio $\frac{1+\sqrt{5}}{2}$ and the algorithm. Moreover, we improve the adaptive version of the algorithm, first by removing the maximum step size hyperparameter (an artifact from the analysis) to improve the complexity bound, and second by adjusting it to nonmonotone problems with weak Minty solutions, with superior empirical performance.
translated by 谷歌翻译
Researchers are doing intensive work on satellite images due to the information it contains with the development of computer vision algorithms and the ease of accessibility to satellite images. Building segmentation of satellite images can be used for many potential applications such as city, agricultural, and communication network planning. However, since no dataset exists for every region, the model trained in a region must gain generality. In this study, we trained several models in China and post-processing work was done on the best model selected among them. These models are evaluated in the Chicago region of the INRIA dataset. As can be seen from the results, although state-of-art results in this area have not been achieved, the results are promising. We aim to present our initial experimental results of a building segmentation from satellite images in this study.
translated by 谷歌翻译
This paper presents the preliminary findings of a semi-supervised segmentation method for extracting roads from sattelite images. Artificial Neural Networks and image segmentation methods are among the most successful methods for extracting road data from satellite images. However, these models require large amounts of training data from different regions to achieve high accuracy rates. In cases where this data needs to be of more quantity or quality, it is a standard method to train deep neural networks by transferring knowledge from annotated data obtained from different sources. This study proposes a method that performs path segmentation with semi-supervised learning methods. A semi-supervised field adaptation method based on pseudo-labeling and Minimum Class Confusion method has been proposed, and it has been observed to increase performance in targeted datasets.
translated by 谷歌翻译
In this paper, we introduce a novel optimization algorithm for machine learning model training called Normalized Stochastic Gradient Descent (NSGD) inspired by Normalized Least Mean Squares (NLMS) from adaptive filtering. When we train a high-complexity model on a large dataset, the learning rate is significantly important as a poor choice of optimizer parameters can lead to divergence. The algorithm updates the new set of network weights using the stochastic gradient but with $\ell_1$ and $\ell_2$-based normalizations on the learning rate parameter similar to the NLMS algorithm. Our main difference from the existing normalization methods is that we do not include the error term in the normalization process. We normalize the update term using the input vector to the neuron. Our experiments present that the model can be trained to a better accuracy level on different initial settings using our optimization algorithm. In this paper, we demonstrate the efficiency of our training algorithm using ResNet-20 and a toy neural network on different benchmark datasets with different initializations. The NSGD improves the accuracy of the ResNet-20 from 91.96\% to 92.20\% on the CIFAR-10 dataset.
translated by 谷歌翻译
Extracting building heights from satellite images is an active research area used in many fields such as telecommunications, city planning, etc. Many studies utilize DSM (Digital Surface Models) generated with lidars or stereo images for this purpose. Predicting the height of the buildings using only RGB images is challenging due to the insufficient amount of data, low data quality, variations of building types, different angles of light and shadow, etc. In this study, we present an instance segmentation-based building height extraction method to predict building masks with their respective heights from a single RGB satellite image. We used satellite images with building height annotations of certain cities along with an open-source satellite dataset with the transfer learning approach. We reached, the bounding box mAP 59, the mask mAP 52.6, and the average accuracy value of 70% for buildings belonging to each height class in our test set.
translated by 谷歌翻译
In this paper, we propose an end-to-end Retrieval-Augmented Visual Language Model (REVEAL) that learns to encode world knowledge into a large-scale memory, and to retrieve from it to answer knowledge-intensive queries. REVEAL consists of four key components: the memory, the encoder, the retriever and the generator. The large-scale memory encodes various sources of multimodal world knowledge (e.g. image-text pairs, question answering pairs, knowledge graph triplets, etc) via a unified encoder. The retriever finds the most relevant knowledge entries in the memory, and the generator fuses the retrieved knowledge with the input query to produce the output. A key novelty in our approach is that the memory, encoder, retriever and generator are all pre-trained end-to-end on a massive amount of data. Furthermore, our approach can use a diverse set of multimodal knowledge sources, which is shown to result in significant gains. We show that REVEAL achieves state-of-the-art results on visual question answering and image captioning.
translated by 谷歌翻译
A large portion of today's world population suffer from vision impairments and wear prescription eyeglasses. However, eyeglasses causes additional bulk and discomfort when used with augmented and virtual reality headsets, thereby negatively impacting the viewer's visual experience. In this work, we remedy the usage of prescription eyeglasses in Virtual Reality (VR) headsets by shifting the optical complexity completely into software and propose a prescription-aware rendering approach for providing sharper and immersive VR imagery. To this end, we develop a differentiable display and visual perception model encapsulating display-specific parameters, color and visual acuity of human visual system and the user-specific refractive errors. Using this differentiable visual perception model, we optimize the rendered imagery in the display using stochastic gradient-descent solvers. This way, we provide prescription glasses-free sharper images for a person with vision impairments. We evaluate our approach on various displays, including desktops and VR headsets, and show significant quality and contrast improvements for users with vision impairments.
translated by 谷歌翻译